Seminarinhalt
Programm
- Explore Azure Machine Learning workspace resources and assets
- Explore developer tools for workspace interaction
- Make data available in Azure Machine Learning
- Work with compute targets in Azure Machine Learning
- Find the best classification model with Automated Machine Learning
- Track model training in Jupyter notebooks with MLflow
- Run a training script as a command job in Azure Machine Learning
- Track model training with MLflow in jobs
- Perform hyperparameter tuning wiht Azure Machine learning
- Run pipelines in Azure Machine Learining
- Register an MLflow model in Azure Machine Learning
- Create and explore the Responsible AI dashboards for a model in Azure Machine Learning
- Deploy a model to managed online endpoint
- Deploy a model to a batsch endpoint
- Introduction to Azure AI Foundry
- Explore and deploy models from the model catalog in Azure AI Foundry portal
- Get started with prompt flow to develop language model apps in the Azure AI Foundry
- Build a RAG-based agent with your own data using Azure AI Foundry
- Fine-tune a language model with Azure AI Foundry
- Evaluate the performance of generative AI apps with Azure AI Foundry
- Responsible generative AI
Zielgruppen
Vorkenntnisse
Dies gilt insbesondere in folgenden Fällen:
- Erstellen von Cloudressourcen in Microsoft Azure
- Verwenden von Python zum Untersuchen und Visualisieren von Daten
- Trainieren und Überprüfen von Machine Learning-Modellen mit gängigen Frameworks wie Scikit-Learn, PyTorch und TensorFlow